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Kinetic Six-Vertex Model as Model 
of bcc Crystal Growth 
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The growth of bcc crystals is studied using van Beijeren's mapping onto the six- 
vertex model. The growth-evaporation processes are described in terms of ver- 
tices. The time evolution is given by a master equation for the probability of the 
six-vertex configurations. The model, studied in the finite-size case by both 
Monte Carlo and analytic methods, applies to the (001) surface and its vicinal 
surfaces. Different growth modes (including nucleation) are found, depending 
on the strength of disequilibrium and on temperature, and the transition 
between them is investigated. 
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1. I N T R O D U C T I O N  

The problem of crystal growth has been theoretically studied for a long 
time and from different points of view. Already at an early stage it was 
found that there are two different modes of growth: layer-by-layer 
(Frank-van der Merwe) and continuous (Volmer-Weber) growth. It was 
pointed out that they are connected with the (smooth or rough) structure 
of the surface. (~/ The roughening transition is reasonably well understood 
in equilibrium(2'3); however, its nature in systems which are far from 
equilibrium is not. 

It has emerged from the numerical simulations of simple ballistic 
models of crystal growth that the width of the surface obeys a nontrivial 
scaling law with increasing time or system size. (4) This opens the way to the 
possibility of classifying the growth models, in analogy with the critical 
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phenomena, into universality classes. Kardar  e t a L  (5) carried out the 
renormalization group study of a nonlinear Langevin equation proposed 
to govern these universality classes. They predict a kinetic roughening 
transition for space dimensions d > d c = 2 + 1. On the other side, Chui and 
Weeks (6/ and later Nozi6res and Gallet (7) studied the linear response of 
a crystalline interface to a driving force. In the range of small driving 
forces they found a transition between two modes of growth. This kinetic 
roughening transition has been recently reexamined by Hwa e ta l .  (8) 

Kert6sz and Wolf investigated the morphology of a model related to directed 
percolation and they obtained a different kind of kinetic roughening 
transition existing also in two dimensions. (9) Very recently several 
numerical simulations have been carried out indicating a transition also in 
other models. (1~ 14) However, the relation between the kinetic roughening 
transition and the transition between different growth modes far from 
equilibrium, if any, is still not clear. 

Recently Garrod e ta l .  ~15) developed a stochastic three-dimensional 
model of crystal growth applicable to a simple cubic crystal and showed 
that it can be mapped onto a five-vertex model. They obtained exact results 
for the growth rate in the case of a finite-size system. Furthermore, using 
this mapping and the exact solution of the five-vertex m o d e l f  6) some exact 
statements could be derived in the case of the thermodynamic limit. (~7) In 
the particular case of the (i 11 ) surface this model appears to be equivalent 
to the hypercube stacking model of Forrest and Tang (18) in 2 + 1 dimen- 
sions. It has been proven (13) that the latter model has a kinetic roughening 
transition (9) in 3 + 1 dimensions; the situation in 2 + 1 dimensions is not 
yet quite clear. 

The model of Garrod et al. has, however, the defect that it predicts a 
zero growth rate for the surfaces with one or two Miller indices equal to 
zero. This unrealistic effect is due to the use of a simplified picture, where 
only the so-called kink condensation and evaporation processes are con- 
sidered, while the other processes important for the growth of surfaces 
lying near to the principal planes are not included. Moreover, to obtain a 
physical picture of the possible transition between growth modes, a 
relatively complex model where different growth modes occur must be 
considered. Such a more realistic model should contain at least two 
parameters: temperature and disequilibrium. 

In this paper we address the problem of generalizing the work of 
Garrod et al. to the surfaces close to the principal planes, including the 
temperature dependence. In two dimensions simple models of this type 
have been studied, and exactly solved, by Gates and Westcott (t9) and 
Garrod. (2~ A three-dimensional model of crystal growth, where the surface 
lies near the principal plane, should allow a description of two-dimensional 
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nucleation. This problem has been already studied in the past in the case of 
simple cubic (sc) crystals using different approximations: classical Becker- 
D6ring theory (21) or an approximative solution of kinetic equations. (3) 

In the case of the solid-on-solid (SOS) model for a simple cubic crystal 
the mapping analogous to Garrod et al.'s leads to a rather complicated 
model which would contain at least 19 different vertices, because even if the 
level difference of nearest neighbors (n.n.) is restricted to be only zero or 
one (restricted solid-on-solid model), there are still 19 different configura- 
tions for the atomic levels on the plaquette of four neighboring sites (com- 
pare ref. 22). The situation is simpler in the case of a bcc crystal. One can 
use the mapping of the surface of a body-centered solid-on-solid (BCSOS) 
model onto the six-vertex model, proposed by van Beijeren 123) in connec- 
tion with the thermal equilibrium roughening transition. The six-vertex 
model is the two-dimensional version of the ice model, introduced by 
Pauling and Slater (24) in order to study the residual entropy of ice at T =  0 
as well as the ferroelectric phase transitions. It is exactly solvable (25'26) and 
the BCSOS model is mapped into its particular case, the so-called F-model, 
which has a phase transition of infinite order. Hence van Beijeren's 
mapping allows an exact description of thermal roughening in the BCSOS 
model. We use this mapping for the study of a nonequilibrium 
phenomenon: the growth of bcc crystals. This leads to the problem of 
solving a kinetic (i.e., time dependent) six-vertex model. A special case of 
the model presented here was considered, among many other models, by 
Meakin et alJ 27) 

In Section 2 the model is formulated. In Section 3 the master equation 
is given and exact solutions for small size are presented, in Section 4 the 
simulation of the growth-evaporation process is described, and in Section 5 
its results are given and discussed. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

We assume that condensation and evaporation are single-atom 
Markov processes and that the events on different sites are statistically 
independent. There are different kinds of these processes with different 
probabilities according to the surroundings of the site where they take 
place. We describe the situation first in the case of the sc lattice, in which 
the different possibilities are easily visualized. The typical processes on the 
surface of a sc crystal fulfilling the SOS condition are shown in Fig. 1. We 
shall call them, for later purposes, hill (Fig. la), cape (Fig. lb), kink 
(Fig. lc), ridge (Fig. ld), valley (Fig. le), gulf (Fig. if), and lake (Fig. lg) 
processes. Let us note that they correspond to the change of 1, 2, 3, 3, 3, 
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a) b) c) 

d) e) f) 

Fig. 1. 

g) 

The different kinds of growth-evaporation process on the surface of a simple cubic 
lattice. 

4, and 5 bonds to n.n. Other configurations for the given kind of process 
can be generated by rotating by a multiple of n/2. 

To get a tractable model, some assumption has to be made about the 
possible processes and their probabilities. In the model of Garrod et al. (15) 
only one process (kink from Fig. lc) was allowed. In the case of a surface 
lying near the principal plane we are forced to consider all processes shown 
in Fig. 1, including all possibilities obtained by rotation. In particular, we 
have four kink processes instead of only one in the model of Garrod et al. 
For sake of simplicity the probability of a process may be assumed to 
depend only on the change of the number of bonds to n.n. atoms. Then 
there are 16 possible processes separated into five groups according 
to the number of bonds formed or broken. In the case of a bcc lattice 
(van Beijeren's model), which we are going to study, the same processes 
can be considered. The only difference is that instead of the bonds to n.n. 
(whose number now does not change) we have to consider the bonds to next 
nearest neighbors (n.n.n.): i.e., the sc crystal corresponds to a sublattice of 
the bcc crystal. 
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To fix ideas let us consider the bcc crystal with lattice spacing a, 
separated into two sublattices: ( A ) a t o m s  at the corners and ( B ) a t o m s  at 
the center. To describe the surface in the z direction we consider the square 
lattice with the spacing a/x/2 rotated by n/4 with respect to the x, y axes 
of the bcc crystal (Fig. 2a). The height hj of  the surface in the z direction 
is measured using a/2 as a unit (Fig. 2b); here j labels the sites on the 
square lattice. Two neighboring sites i, j on this lattice correspond to the 
tlrojection of a toms from different sublattices of the bcc lattice, so the dif- 
ference h i - h i  has to be nonzero.  In van Beijeren's model  (23) this difference 
can have only two values +_a/2. Then there are only six possible level 
configurations for the closed loop of four neighboring sites. If arrows are 
drawn across the bonds between the neighboring sites leaving the higher 
level a tom on the right of the arrow, then a one-to-one correspondence 
between the surface in van Beijeren's model  and the configurations of  the 
six-vertex model  (25) is obtained. An example of this correspondence is given 
in Figs. 2c and 2d. The six vertices are shown in Fig. 3 using arrows and 
also the so-called line representation in which segments occupied by arrows 
pointing down or  to the left are marked by a solid line while segments 
occupied by arrows pointing up or to the right are left blank. 

(a) X �9 X �9 X �9 X 

�9 X �9 X �9 X �9 

X �9 X �9 X �9 X 

x A - s u b l a L t : i c e  
�9 X �9 X �9 X �9 

X �9 X �9 X �9 X 

�9 B - s u b l a t t i c e  �9 • �9 • �9 x �9 

X �9 X �9 X �9 X 

Fig. 2. (a) The square lattice corresponding to the projection of the two sublattices of the 
bcc lattice; x and y are orientations of the bcc lattice. (b) An example of the field of heights 
for the (013) surface. (c) The configuration of arrows corresponding to the levels in part (b). 
(d) The same configuration described in terms of vertices. (e) The terrace-ledge-kink structure 
for the surface from part (b). The numbers label different levels. 



,<
 < 

C
~ 

C
~ 

h~
 

C
~ 

I 
�9

 

C
~ 

6,
? 

C
~ 

C
~ 

C
~ 

C
~ 

h~
 

t 
~ 

C
~ 

C
~ 

Q
 

6.
? 

C
~ 

6.
? 

C
~ 

6.
? 

t 
~ 

Q
 

6
3

 

C
~ 

0 L 
~ 

Q
 



.~
 b 

X
 

�9
 

C
O

X
 

~ 
X

 
~.

~ 
�9

 

I 
' 

I 
" 

"-
--

" 
X

 
i < X
 

0 0
" 

m
 



586 Kotrla and Levi 

j I 
n i 

1 2 3 4 5 6 
Fig. 3. The six vertices and their line representation. 

Due to the alternation of the sublattices there is no sharp step struc- 
ture separating layers on the bcc surface; one can, however, represent the 
decrease or increase of the levels and so visualize the growth-evaporation 
processes using the following rule. Let us consider a segment connecting 
two n.n. sites in one sublattice (i.e., two n.n.n.). There are two sites from the 
opposite sublattice adjoint to it. Mark the segment with a solid line if the 
levels of the adjoint sites are different and leave it blank otherwise. An 
example of this picture is in Fig. 2e. This line picture is different from the 
line representation of the six-vertex model. It affords a visualization of 
islands relevant for 2D nucleation, but has the drawback that it does not 
allow us to distinguish between the two "flat" configurations: (i)hA = na, 
hB= ( n +  1/2)a and (ii)hA =na, hB= (n--1/2)a, which, in the six-vertex 
description, correspond to two different vertex configurations. 

A growth-evaporation process at site j means the change of hj by _+ a. 
Due to the constraint on the level difference of n.n. atoms this change is 
possible only on some sites. Let us call {v} = {vi} the possible configura- 
tion of the six-vertex model, where vi is the vertex on the site i of the lattice 
dual to our initial square lattice. Then the growth-evaporation process is 
described in terms of vertices as a change Vi ~ ~'~ of a plaquette of the four 
neighboring vertices 

Vi=(  vi+~ vi+v+h~ (1) 
\ vi Vi+h ,/ 

Here h and v stand for unit shifts parallel to the axes of the square lattice. 
The 16 possible processes in our model (labeled by a =  1 ..... 16) are 
explicitly listed below: 

Hill, a = 1 

65 \ 4 2 ]  
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Cape,  a = 2, 3, 4, 5 

(5661) ~--, { 13'~ 
\ 4 6 J '  

65/' 

(54) ~ (15) 
65 42 ' 

(~6~(~3) 
35/' 

(3) 

Kink,  a = 6, 7, 8, 9 

(56) ~ (~3) 
31 56 ' 

(~4~(:X), 
65/ 

(54) ~ (15) 
61 46 ' 

35J 

(4) 

Ridge and valley, a = 10, 1 1 

35/' 5 2 '  61 <---' 46 (5) 

Gulf, a = 12, 13, 14, 15 

(54)~(15) (24)~(65) 
31 56 ' 61 46 ' 

(24~(6~) (~6)(~) 
35J 52 ' 31 *-~ 56 

(6) 

Lake,  a = 16 

(~)~6,~ 
\ 5 6 /  

(7) 

The transi t ions f rom left to right cor respond  to condensat ion with 
"probabi l i ty"  C a and the reverse transi t ions to evapora t ion  with 
"probabi l i ty"  E a. We write "probabi l i ty"  in quotes because the quantities 
considered m a y  be just propor t ional ,  ra ther  than equal, to probabil i t ies 
(see below). 

The  "probabi l i t ies"  C ~ and E a depend on the type a of process, i.e., 
on the geomet ry  of the surroundings,  and on the strength of the dis- 
equilibrium. We assume C a and E a to be determined by the change of the 
n u m b e r  of  bonds  to n.n.n. (n.n. in the sublattice). This can be expressed 
as a dependence on the change of the energy of the six-vertex model  
Eo = ~ i  8vi with vertex energies el = e2 = e3 = e 4  = ~, /~5 = /~6  = 0. The  effect of 
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the disequilibrium should be contained only in the "probabilities" for con- 
densation. For a process Vi ~ Vi the Glauber kinetics (28) will be used in the 
following form: 

C ( V i ~  P i ) -  e ~ E  + 1 for condensation 

(8) 
1 

E( Vi --, ~'~-) - e~ dE + 1 for evaporation 

where A E  = E e - E v  and/3 = 1/(kB T) gives the temperature. Since for the 
given type of process A E =  A E  c for condensation is opposite to A E =  A E  e 

for evaporation, the relationship 

C a = e~(~, de,) (9) 
E a 

holds. 
It should be noted that the quantities C a and E ~, as given by (8), are 

not probabilities for the acceptance of a Monte Carlo move (C ~ may well 
be larger than 1). A large value of C or E means simply a short time 
before the corresponding move is made. The alternative choice, 
{exp[~(AE-T-A#)]  + 1}-~, where the upper sign is for condensation and 
the lower one for evaporation, is more symmetric and elegant mathemati- 
cally and corresponds better to the spirit of the Monte Carlo method, but 
the resulting rates of growth have no physical meaning. In the present 
formulation only the condensation rate (and not the evaporation rate) 
depends on A#, i.e., on the vapor pressure, as it should. We prefer here 
physical significance to mathematical beauty. 

The time evolution of the surface is given by the master equations for 
the probability P({v}, t) of the given configuration {v} at time t 

dP({v} ,  t ) /d t=  - ~" (Capa({V}) + Eaqa({v}))  P({v} ,  t) 
a 

+ Z (C~176 
a.{~} 

(10) 

where pa( { V } ), resp. qa({ v } ), is the number of condensation, resp. evapora- 
tion, sites for the given process (i.e., the number of the relevant plaquettes 
of vertices) in the configuration {v } (we shall call them multiplicities), and 
M~v, resp. N~, is the number of ways by which condensation, resp. 
evaporation, leads to a transition from the configuration {v} to {g} via the 

a _ _  a given process. The reciprocity relationship Nv~- M~v holds. 
We study our kinetic six-vertex model ori a finite size table N x N with 

periodic boundary conditions for the vertices. (This corresponds to 
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periodic boundary conditions for the level differences of neighboring 
atoms.) The number of possible configurations increases very rapidly with 
N. All configurations can be separated into classes invariant under the 
growth and evaporation processes (i.e., two configurations belong to the 
same class if they can be connected by a sequence of processes). We show 
that different classes correspond to surfaces with different Miller indices. 
Let us call n~, resp. m~, c~ = 1, 2, 3, 4, 5, 6 the number of vertices of type 
c~ in the row, resp. column, of the N x N table. Let the rows be labeled from 
top to bottom. Then the sum H = n2 + n3 + n6 for the nth row is the number 
of arrows between the (n - 1)th and the nth row pointing down, i.e., in the 
line representation of the six-vertex model it is the number of lines crossing 
the nth row and due to line conservation (26~ it is the same for all rows. 
Since the down arrows correspond to a decrease of the level of the surface 
atoms in the direction from left to right, the level difference between the left 
and the right edges of our table is D H = H -  ( N -  H) = n2 + n3 - nl -- n4, 
and it is the same for all rows. (Here we have used the fact that ns =n6.) 
Analogously, the level difference between the bottom and the top is D v = 
ml + m 3 -  m 2 -  m4, and is the same for all columns. It is easy to check that 
the numbers Du  and Dv are conserved by all processes (2)-(7). On the 
other hand, two configurations with the same differences Du  and D v 
belong to the same class. Hence, the class is characterized by a pair of 
numbers (D~I, Dr). Since each of them can take N +  1 values - N ,  
- N +  2,..., N - 2 ,  N there are ( N +  1) 2 classes for given N. 

Using the symmetry with respect to rotation by multiples of re/2 
around the z axis and the reflection with respect to the (x, z) plane, the 
study can be restricted to the classes Dv>~O, DI~<~O, [DH[ <<.Dr. This 
corresponds to the restriction to surfaces with nonnegative Miller indices 
fulfilling h ~<k. After this restriction the number of classes is CN = 
1C(C+ 1), C =  IN/2]  + 1. C of them, for D r = N ,  are passive, i.e., they do 
not allow any process to be realized in their configurations. The passive 
classes appear due to the restriction on the difference of the levels of n.n. 
sites in van Beijeren's model. The passive configurations contain only 
vertices 1 and 3 and correspond to the surfaces with monotonically 
increasing levels in some direction and Miller indices fulfilling h + k =/ .  

Taking into accoufit the rotation by z~/4 between our table and the 
axes of the bcc crystal, we find that the class (Dr,  DH) corresponds to the 
surface with the Miller indices (h, k, l) given by 

h = ( D v - l D ~ l ) / u ,  k = ( D v + l D ~ l ) / u ,  l = 2 N / u  (11) 

where u is the largest common factor of D r - [ D ~ [ ,  D v +  IDH[, and 2N. 
For  any given N we get a set of admissible surfaces. The hierarchy of these 
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surfaces for increasing N has the following property: If the surface with the 
Miller index (h,k, l) occurs for size No [class (Dv, D~)], then it will 
appear for all sizes N multiple of No, N= kNo [class (kDv, kDH)]; k is any 
integer. In particular, class (0, 0) corresponds to the (0, 0, 1) surface for any 
even N. 

An important quantity is the growth rate G. In general it depends on 
time: if the system at time t is in configuration {v}~, the growth rate is 

G(t) = E (Capa({v}t)-- Eaqa({v} t)) 
a 

The mean growth rate is given by 

(12) 

<G)=2(Ca<pa)-Ea(qa)) 
o ( 1 3 )  

<pa(t)) = ~ pa({v})P({v}, t), ( q a ( t ) ) =  ~ qa({v})P({v}, t) 

where the averages in ( p a )  and (qa) are taken over the configurations in 
one class. When the system reaches the steady state, the average multi- 
plicities ( p a )  and (qa) and also the mean rate of growth ( G )  become 
time-independent. Since ( G )  increases trivially with the number of sites N 2 
in the table, in the following we shall study the rate of growth per site G = 
(G)/N 2. To calculate G one has to solve two problems: (i) to find the dis- 
tribution of the multiplicities pa( { v } ) and q~( { v } ) in a space of configura- 
tions; (ii)to solve the master equations for P({v}). The exact solution of 
the six-vertex model is known(25'26); it gives, however, only the free energy, 
whereas our multiplicities pa, qa are high-order, four-site correlation func- 
tions. Even if they were calculated, it is unlikely that the complicated 
master equations could be solved analytically. In this situation we turn to 
numerical solution for finite size N. Exact solutions of the master equations 
are found for very small N; for larger N, Monte Carlo simulations are 
performed. The former serve us mainly as a test of the latter. 

3. EXACT FINITE-SIZE CALCULATION 

The calculations can be simplified using the fact that the configura- 
tions differing only by translation (i.e., for periodic boundary conditions, 
by cyclic permutation of rows and/or columns) have the same time evolu- 
tion. Then each class can be divided into subclasses Sm, where configura- 
tions in the same subclass differ only by translation, and instead of the 
probability P({v}) it is sufficient to calculate a probability Pro(t)= 
~2{v)~sm P({v}, t) that the system at time t is in a configuration belonging 
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to the mth subclass. The time evolution within the class is described by the 
master equation 

d P m / d t  = - 2  (Cap a -t- Eaq a )  Pm( t )  
a 

+ ~ (CaM~,n + E~ Pn(t) 
a,n 

(14) 

where pg and q~, are the multiplicities in the mth subclass. They are the 
same for all configurations in the subclass. Man (resp. Ngn) equals the 
number of ways Pgn (resp. qg,) in which a condensation (resp. evapora- 
tion) process generates, from the configurations belonging to the subclass 
n, the configurations belonging to the subclass m, divided by the number 
N~ of configurations in the subclass n. Since the subclass n contains Nn 
equivalent configurations, then P~n (resp. q~m,) is equal to Nn times the 
number of ways in which a condensation (resp. evaporation) process 
generates, from one given configuration in the subclass n, a configuration 

a a a _ _  a belonging to the subclass m. Further, since Pmn = qnm, N m n  - (Nm/Nn) Mnm 
holds. 

The master equation (14) has some interesting properties. Let us first 
recall the well-known theorem (29'3~ according to which all solutions of a 
master equation tend (under the appropriate hypotheses, that our master 
equation happens to satisfy) to one steady-state solution, irrespective of the 
initial conditions. This is equivalent to saying that, writing the master 
equation in the form 

dPm/dt = 2 Lm~Pn (15) 
n 

all eigenvalues of L are negative, except for 0, which is nondegenerate. 
In particular, van Kampen shows that certain quantities which he caUs 

entropies are increasing functions of time (except of course in the steady 
state, where they stay constant). (3~ There is considerable freedom in 
the choice of these quantities. The conventional choice, however, is 
~,n Pn ln(psteady/Pn). For q = 1 [where q = exp(fl A/~)], i.e., at equilibrium, 
the latter reduces to 

- F =  - ~  PREEn + kTln(P,/Nn)] (16) 
tl 

(i.e., to minus the free energy, not to the entropy!). E,  is the energy of the 
configuration. For r/=~ 1 no such simple form is available. However, we can 
prove the following (physically rather obvious, but comforting) result. 

8 2 2 / 6 4 / 3 - 4 - 8  
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Theorem. In the steady state the mean growth rate G has the same 
sign as A#. 

The proof is simple. Let co, be the ratio P,/P~q between the probability 
of a subclass and the same at equilibrium. Then, by using the conventional 
method by which entropy is shown to increase (see e.g. van Kampen (3~) 
the time derivative of the free energy (16) is shown to be made up of two 
terms, of which the first is clearly nonpositive, being the sum of quantities 
of the form 

(r/co m - co,) In [CO,/(qcom)] (17) 

multiplied by positive coefficients, and the second is 

kTZG In q (18) 

(Z being the partition function). In the steady state the time derivative of 
F vanishes, and the theorem follows. 

For low N it is relati;r easy to classify all subclasses and to calculate 
�9 a a a a 

the coefficients Pro, qm, Mmn,  Nmn. In the simplest case, N-- 2, there is only 
one active class D r =  D~/= 0, with six configurations, which separate into 
two subclasses�9 Only hill and lake processes take part in the transition 
between them. This is obviously insufficient to describe the nucleation. The 
solution of the equations (14) for the steady state gives the mean growth 
rate per site 

e • ~ - 1 
G = (19) 

e 4fl8 -t- 2e --4fie _[_ 3 

i.e., the Wilson-Frenkel law (3) multiplied by a function of fie only. 
Also in the case N =  3 there is only one active class Dr= 1, DH= --1. 

It has four subclasses and the exact solution can be easily obtained. Since 
the analytic expression is rather lengthy, we do not write it explicitly�9 The 
example of the dependence of G on the disequilibrium variable fl/~ for three 
temperatures is plotted in Fig. 4. The temperature is compared with the 
roughening temperature TR of the six-vertex model kB TR = e/In 2. Still not 
all processes are realized for N--- 3 (ridge and valley processes are missing), 
but all possibilities for the change of the number of bonds to the n.n.n, are 
allowed. 

The number of subclasses for N~> 4 increases so much that the 
problem cannot be solved analytically without the help of a computer. For 
example, for N =  4 there are three nonequivalent active classes, of which 
the largest has 70, the second 23, and the third 10 subclasses. (32) However, 
even using the computer for the classification in subclasses and then for the 
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Fig. 4. The dependence of the growth rate per site G on disequilibrium fl A# for N = 3, active 
class, (013) surface. The curves correspond to the exact solution for different temperatures: 
T I T  n = 0.5 (solid curve), T I T  R = 1 (dashed-dotted curve), and T / T R  = 2 (dotted curve). The 
points are results of the Monte  Carlo simulation. 

solution of the master equations, we are still limited to low N ( N =  5 or 
6). (15) Although it may be pleasant to have exact results, such small sizes 
are clearly insufficient for the study of the nucleation phenomena, because 
to observe the latter the size of the system has to be much larger than the 
size of the critical cluster which (if such a cluster exists at all) increases, 
when fl Aft goes to zero, a s  1/(AN) q, q >~ 1. 3 

3 This may be shown as follows. ,The free energy of a cluster is given by F = - A  A,un + B e n b ,  

where n is the number  of a toms in the cluster and n b in its boundary. Let D be the dimen- 
sionality of the cluster and D'  that of the boundary;  then n = ~ L  '9, n b = f lL  D', where L is a 
typical length. The critical cluster corresponds to the max imum free energy. Let us first 
assume D to be 2. Finding the maximum,  the size L c of the critical cluster is found to be 
proportional to ( A # )  -u (2  9,); i.e., q =  ( 2 - - D ' )  -1. If the boundary of the cluster is regular, 
D'  = 1, q = 1. If, however, the boundary of the cluster is fractal, or more generally self-affine 
(which may happen whether the dus te r  is itself a fractal or not)  D ' >  1; therefore q >  i. If, 
on the other hand, D < 2 (i.e., the cluster is a fractal), then D ' =  D and there is no critical 
cluster. 
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Hence, the results of any finite-size calculation become incorrect in the 
nucleation regime (low temperature and low disequilibrium) for A# below 
some critical value A#c. 

4. SIMULATION 

For the more extensive studies of our model we have used a Monte 
Carlo simulation. It is founded on the ergodicity of the model. We start 
from some configuration and after a sufficient number of steps we obtain 
the quantities characteristic for the system. In each step of our simulation 
the processes possible in the given configuration together with their multi- 
plicities are known. The probability of the condensation, resp. evaporation, 
process of the type a is Capa({v})/Q({v}), resp. Eaqa({v})/Q({v}), where 
Q({v})=2a(Capa({v})+E"q"({v})). One random number is used to 
decide which process will take place and a second random number is 
generated to select one of the possible sites. Then the configuration is 
changed and multiplicities are recalculated. To do that one needs only to 
look at the change of nine plaquettes, the plaquette of the process and eight 
plaquettes surrounding it. 

An alternative procedure would be the following: select a site at ran- 
dom and check if any process is possible on it. If it is the case, then realize 
it or not with probability proportional to C a in the case of condensation 
and to E a in the case of evaporation; otherwise select a new site. The 
method chosen here is more complicated, but it avoids the unsuccessful 
attempts in which no process is possible on the chosen site. Hence, we need 
a lower number of iterations to get the results with the same accuracy. 

The system is considered to stay in the state {v} for a time inversely 
proportional to the total probability of all possible processes Q({v}) per 
unit time. To obtain the mean growth rate the time average over K steps 
is calculated: 

K 

( G ) = t  -~ ~ ~(Capa({v})-E~qa({v}))/Q({v}) (20) 
n = l  a 

Here the total time t is given by 

K 

t= ~ 1/Q({v}) (21) 
n = l  

Due to the ergodicity this time average goes to the configurational average 
for a sufficiently long time t. The accuracy has been checked by comparison 
with the exact solution for N =  2 and 3 (Fig. 4). In both cases convergence 
(and agreement with the exact result up to three valid digits) is obtained 
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Fig. 5. The evolution of the calculated mean growth rate (G) during the simulation for 
N= 32, (001) surface, fl A]~ = 1, and three temperatures as in Fig. 4. 

already after 10,000 steps. For  large N the quantity ( G ) ,  of course, 
oscillates much longer (see Fig. 5). For T~> TR, fl A# ~> 1, and the size up 
to N =  32 the convergence is obtained after 500,000 steps. The necessary 
number of iterations increases with decreasing temperature and chemical 
potential difference between vapor and crystal and for small disequilibrium 
or low temperature usually many more steps are needed. For T=0.5TR 
and/~ A# ~ 1 we need typically 2- 10 6 steps. 

Before studying the physics we have explored the finite-size effects. The 
dependence of the calculated growth rate per site for the (001) surface on 
N for the temperature T=0.5TR and several values of the disequilibrium 
fi A# is plotted in Fig. 6. For the higher temperatures the situation is better: 
the dependence is weaker. These results suggest that finite-size effects are 
small for N~> 32. Hence, the majority of our calculations have been done 
for N =  32, and for the (001) surface. 

5. R E S U L T S  A N D  D I S C U S S I O N  

An example of the dependence of the growth rate per site G on dis- 
equilibrium for small and large values of/~ A/~ is given in Fig. 7. The data 
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Fig. 6. The dependence of the growth rate per site G on size N of the table for (001) surface, 
T/TR = 0.5, and several values of disequilibrium fl A# = 1 (crosses), fl AS = 2 (circles), fl Ar = 3 
(stars), fl AS =4 (plus signs). 

for six different temperatures are compared  with the Wilson-Frenkel  law 
G ~ (e ~ ~ - 1) in Fig. 8. We see that  for large disequilibrium and large tem- 
peratures the agreement is quite good, whereas for the temperatures lower 
than or equal to TR it breaks down in the low-disequilibrium region; for 
example, for T = 0 . 5 T R  it breaks down for fi Ap ~< 3. F r o m  this plot we can 
also extract the temperature-dependent  prefactor in the Wilson-Frenkel  
law. At high temperatures (above TR) and Small disequilibrium the 
Wilson-Frenkel  predicts linear growth, i.e., G is propor t ional  to fl Ag. This 
is indeed the case in the present simulations. The limit 

G 
K =  lim (22) 

~ o  fl A# 

is shown in Table I. I t  behaves in a way somewhat  similar to the coefficient 
K of the logar i thm in the equilibrium mean square height difference, (33) 
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vanishing in the smooth phase (actually, due to finite-size effects, we find 
a nonvanishing R just below TR), increasing abruptly at TR, and then 
slowly as T ~  oo (~, however, saturates to the infinite-temperature limit 
faster than K). 

It is expected that the nucleation phenomena will be important for low 
temperatures and disequilibria. We have compared the data for this range 
of parameters with the predicted Becker-D6ring law for the rate of growth 
by nucleation as a function of A#: G ~ e x p ( - f l E 2 / A # ) .  (21,3) Here E is a 
parameter with the dimensions of energy depending on the temperature 
and with only weak dependence on disequilibrium. (E is closely related to 
the step energy per unit length). In Fig. 9 we have plotted the quantity 
fi A/~ In G (versus fl A#), which should be linear in fl Ap if the Becker- 
D6ring law held with constant E. Only very roughly can one say that there 
is a region of fl A# and T where this law is at least approximately fulfilled. 
However, our data are compatible with a law for the rate of growth by 
nucleation of the form G,-, ( f lA#)  r exp(- f lE2/A#) .  (~) The deviation from 
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this law for very small fl A/~ is a finite-size effect. Extrapolating this quasi- 
linear dependence on /~ A# to d#  = 0, we can obtain values of E. They 
decrease with increasing temperature in agreement with the expected 
vanishing of the step energy as T ~ TR. 

The prefactor is the so-called "Zeldovich factor" and the recommended 
value for r in the literature is 5/6. (3,36) In the case of clusters with a fractal 

Table I. Comparison between R = l i m a . ~ 0  G/(~ Ap) 
and the Coefficient K of the Logarithmic 

Asymptotic Behavior of the Half 
Mean Square Height Difference 

T/TR K K/2 

0.8 0.000 0 
0.9 0.020 0 
1.0 0.070 0 ~ 0.051 
1.2 0.092 0.072 
1.5 0.102 0.087 
2.0 0.104 0.101 
4.0 0.104 0.125 
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(or self-affine) boundary the disequilibrium A# in the exponential would be 
raised to the power q, q> 1, but we find that in our case the growing 
clusters are always compact and, at least for layer-by-layer growth, have a 
regular boundary, i.e., q = 1. Our present simulations are not accurate 
enough to estimate r, because with the given size N = 32 we cannot perform 
the calculations for sufficiently small fl Aft, as discussed above. For better 
understanding a more detailed description of the nucleation clusters is also 
needed. The work on this problem is in progress. 

For medium/~ AFt there is a crossover between nucleation and Wilson- 
Frenkel type behavior, corresponding to the transition between layer-by- 
layer (Frank-van der Merwe) ad continuous (Volmer-Weber) growth. 
This is seen in the change of the time evolution of the average height /~ 
for the given temperature with increasing fl A# (Fig. 10). Here we have 
introduced a dimensionless variable A/~ = A#/ku TR. 

To determine the ranges of parameters where these two different 
modes of growth apply, we change the variables from (fl A#, T) to (Aft, T) 
and employ the different temperature dependence of the growth rate 
according to the Becker-D6ring law (increasing with temperature) and the 
Wilson-Frenkel law (decreasing with temperature, since the rapid satura- 
tion of R with increasing temperature implies that the main temperature 
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Fig. 9. The dependence of - /~ Ap In G in the nucleation regime, as calculated by the Monte 
Carlo simulation, on fl A/z for N =  32 and different temperatures. 
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dependence is due to the Wilson-Frenkel factor e ~ 4 , _  1). Then the curve 
in the (Aft, T) plane separating the two modes can be approximately 
calculated by finding the temperature corresponding to the maximum 
growth rate for constant Aft. This needs very accurate calculation of the 
growth rate. The diagram obtained in this way is shown in Fig. 11. A 
similar diagram was obtained by Bennema and Gilmer (35) using a condi- 
tion on the existence of minima in the Gibbs free energy. 

The Becker-D6ring-like form of the dependence of growth rate should 
disappear for large disequilibrium even at low temperatures because for 
A/~ > Aria t already one adatom is the critical cluster. Indeed, the separating 
curve for very low temperatures and large disequilibrium goes up and then 
it suddenly turns to the T =  0 axis. There is a critical value Afo such that 
for Af  > Aft  there is no maximum in the growth rate for constant Aft 
(although at low temperature there is still layer-by-layer growth in the case 

I q l l l I t l l l , , ,  4 , , l l l , l , I ,  
o d e  i , , i I i ] . . . .  i i 3 I cluste~ 2.78- I I .... ii 
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Fig. 11. The regions of different modes of growth in the (Aft, T) plane. The dotted line 
indicates the region of the one-cluster mode of growth. 
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of the finite system, see below). For N =  32, A/~c = 2.773 and this value is 
only weakly dependent on the size. 

A direct check of the configurations confirmed that sufficiently inside 
the region of continuous growth the crystal really grows by the formation 
and expansion of many small clusters, not only in one layer, but also 
one on the other, with a surface width of several layers, whereas in the 
layer-by-layer region the growth is due to the expansion of a few large 
clusters in one or two layers. We have, however, found that for small 
temperature and large disequilibrium up to A/~ = 5 the crystal still grows 
in the layer-by-layer mode, mostly with one expanding cluster, i.e., with 
one growing layer only. This can be explained by a comparison of the 
probability Pexp that in the configuration with one cluster the cluster will 
expand with the probability Paaat that another adatom wilt be added by the 
hill process. This, of course, depends on the size N of the table. For 
sufficiently large N, Pexp < Padat holds; but for a given size there exists a 
critical temperature 

T*(N) ..~ TR 
in 2 

ln(N/2 x ~ )  

below which Pexp>Padat independently of A/~ [T*(32)~  TR/3]. On the 
other hand, for sufficiently large A/~> A/i* the probability Pexp that the 
cluster will grow is also larger than the probability Pevap that it will 
evaporate, even for one adatom. A/~* depends on the temperature; for low 
temperature, A/~*~ 2 In 2-1 .39 .  Hence the growth takes place by a one- 
cluster mode. Since T*(N) is a decreasing function of N, however, this one- 
cluster mode is a finite-size effect and we do not expect it to be present for 
an infinite system. We believe that the separating curve for the infinite 
system crosses the T =  0 axis. 

At the opposite end the correct separating curve should go through 
the point ( T =  TR, A/~=0) because for A/~=0 and T >  TR the surface is 
always rough (and the disequilibrium can only destroy the smoothness of 
the surface). Our line goes to higher temperatures as Aft ~ 0. This is due 
to the approximative way in which it was determined, which can only 
reflect its qualitative features. Our data suggest that the line is turning to 
the right as A/~ ~ 0. This is consistent with the result of the dynamic 
roughening theory (36) that it should meet the temperature axis tangentially. 
(The exact form of this dependence is, of course, difficult to verify numeri- 
cally.) 

One can expect that the two modes of growth may also differ in 
the dependence of the mean square height difference w2=(1/N 2) 
~i((hi-h)2), [where h =  (1/N2)~ihi], on the size N. For both growth 
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modes w appears to diverge with increasing N, probably according to 
different laws, the roughness being of course milder (logarithmic?) in the 
layer-by-layer mode and stronger in the continuous mode. However, 
whether a sharp kinetic roughening transition really exists in our model 
and the nature of its connection with transition between growth modes 
remain to be investigated. Work on this problem is in progress. 

In this paper we have concentrated on the study of the growth on the 
(001) surface. A further interesting problem under investigation concerns 
the dependence of the rate of growth on the Miller indices of the surface. 
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